Bochspwn漏洞挖掘技术深究(2):内核未初始化漏洞检测

本文主要介绍Bochspwn Reloaded内核未初始化漏洞检测技术,它采用污点追踪对内核层向用户层泄露数据的行为进行检测。

关于bochs插桩技术参考《Bochspwn漏洞挖掘技术深究(1):Double Fetches 检测》,此处不再赘述。

直接先看下instrument.h中实现插桩函数有哪些:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// Bochs初始化CPU对象时的回调函数
void bx_instr_initialize(unsigned cpu);
// Bochs析构CPU对象时的回调函数
void bx_instr_exit(unsigned cpu);
//Bochs每次执行中断操作(软件中断、硬件中断或异常)时的回调函数
void bx_instr_interrupt(unsigned cpu, unsigned vector);
// Bochs执行指令前的回调函数
void bx_instr_before_execution(unsigned cpu, bxInstruction_c *i);
// Bochs执行指令后的回调函数
void bx_instr_after_execution(unsigned cpu, bxInstruction_c *i);
// Bochs访问线性内存时的回调函数
void bx_instr_lin_access(unsigned cpu, bx_address lin, bx_address phy,
unsigned len, unsigned memtype, unsigned rw);
// WRMSR指令(写模式定义寄存器)被执行时的回调函数,MSR寄存器数与值作为参数传递给回调函数
void bx_instr_wrmsr(unsigned cpu, unsigned addr, Bit64u value);

初始化工作

第一篇中讲过bx_instr_initialize主要用来加载配置信息,针对不同的系统环境设置不同的数据结构偏移地址,用来提供需要的进程/线程等重要信息。在这里它另外增加污点追踪功能的初始化工作:

1
2
3
4
5
6
7
8
9
// Initialize the taint subsystem.
taint::initialize();

// Initialize helper taint allocations.
globals::pool_taint_alloc = (uint8_t *)malloc(kTaintHelperAllocSize);
memset(globals::pool_taint_alloc, kPoolTaintByte, kTaintHelperAllocSize);

globals::stack_taint_alloc = (uint8_t *)malloc(kTaintHelperAllocSize);
memset(globals::stack_taint_alloc, kStackTaintByte, kTaintHelperAllocSize);

主要作一些用于污点信息记录的内存结构分配与VEH异常处理回调设置:

1
2
3
4
5
6
7
8
void initialize() {
// Reserve a memory region for the taint data.
taint_area = (uint8_t *)VirtualAlloc(NULL, kTaintAreaSize, MEM_RESERVE, PAGE_READWRITE);

// Register a VEH handler to commit taint memory touched in other taint
// functions.
AddVectoredExceptionHandler(/*FirstHandler=*/1, OvercommitHandler);
}

VEH回调函数实现如下,当发生访问违例时,若异常地址不在污点内存区域,则将其设置为可读写内存,然后继续执行:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
static LONG CALLBACK OvercommitHandler(
_In_ PEXCEPTION_POINTERS ExceptionInfo
) {
if (ExceptionInfo->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION) {
const uint8_t *excp_address = (uint8_t *)ExceptionInfo->ExceptionRecord->ExceptionInformation[1];
if (excp_address >= taint_area && excp_address < &taint_area[kTaintAreaSize]) {
if (VirtualAlloc((void *)((uint64_t)excp_address & (~0xffff)), 0x10000, MEM_COMMIT, PAGE_READWRITE)) {
return EXCEPTION_CONTINUE_EXECUTION;
}
}
}

return EXCEPTION_CONTINUE_SEARCH;
}

中断响应

再看下bx_instr_interrupt函数实现,主要是发生中断时,检测该中断地址是否可写,并设置全局标志:

1
2
3
4
5
6
7
8
void bx_instr_interrupt(unsigned cpu, unsigned vector) {
if (globals::bp_active && vector == 3) {
BX_CPU_C *pcpu = BX_CPU(cpu);
write_lin_mem(pcpu, globals::bp_address, 1, &globals::bp_orig_byte);

globals::bp_active = false;
}
}

污点标记与追踪

bochspwn-reloaded会对内核分配的stack/heap/pools作污点标记:

image-20181222092741926

1、栈污点标记

检测修改ESP寄存器的指令,比如:ADD ESP, ... SUB ESP, ... AND ESP, …,若在执行后(bx_instr_after_execution)ESP发生递减,则调用taint::set_taint(new_rsp, length, /*tainted=*/true)标记为污点

1
2
3
4
5
6
7
8
9
10
void bx_instr_before_execution(unsigned cpu, bxInstruction_c *i) {
...
const unsigned int opcode = i->getIaOpcode();
switch (opcode) {
case BX_IA_SUB_EqId:
case BX_IA_SUB_GqEq: /* Stack allocation handling */
...
case BX_IA_PUSH_Eq: /* Allocator prologue handling. */
...
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
void bx_instr_after_execution(unsigned cpu, bxInstruction_c *i) {
globals::rep_movs = false;

if (globals::rsp_change) {
BX_CPU_C *pcpu = BX_CPU(cpu);
const uint64_t new_rsp = pcpu->gen_reg[BX_64BIT_REG_RSP].rrx;

if (new_rsp < globals::rsp_value) {
uint64_t length = globals::rsp_value - new_rsp;

if (length <= kTaintHelperAllocSize) {
taint::set_taint(new_rsp, length, /*tainted=*/true);
write_lin_mem(pcpu, new_rsp, length, (void *)globals::stack_taint_alloc);

if (globals::config.track_origins) {
taint::set_origin(new_rsp, length, pcpu->prev_rip);
}
}
}

globals::rsp_change = false;
globals::rsp_value = 0;
}
}

2、堆/Pools污点标记

检测内核内存分配操作的指令,则调用taint::set_taint(address, size, /*tainted=*/true)进行污点标记,主要通过bx_instr_wrmsr函数来实现,当写入的地址是MSR_LSTAR寄存器时,它代表着syscall调用:

1
#define MSR_LSTAR	0xc0000082 /* long mode SYSCALL target */
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
void bx_instr_wrmsr(unsigned cpu, unsigned addr, Bit64u value) {
if (addr == MSR_LSTAR) {
globals::nt_base = value - globals::config.KiSystemCall64_offset; // ntoskrnl.exe中nt!KiSystemCall64偏移地址,用于获取内核基址

for (size_t i = 0; i < globals::config.pool_alloc_prologues.size(); i++) {
globals::config.pool_alloc_prologues[i] += globals::nt_base;
}
set_breakpoints_bulk(globals::config.pool_alloc_prologues, BP_POOL_ALLOC_PROLOGUE);

for (size_t i = 0; i < globals::config.pool_alloc_epilogues.size(); i++) {
globals::config.pool_alloc_epilogues[i] += globals::nt_base;
}
set_breakpoints_bulk(globals::config.pool_alloc_epilogues, BP_POOL_ALLOC_EPILOGUE);
}
}

其中pool_alloc_prologuespool_alloc_epilogues分别代表alloc函数的前序与后序函数,以下是windows-x64系统配置下的地址:

1
2
pool_alloc_prologues  = 0x1E0590
pool_alloc_epilogues = 0x1E07AD

3、污点清除
当栈顶弹出或者堆块调用free函数前序指令(Linux下配置地址),以及内存拷贝的目标地址是内核地址时,均将其污点标记清除,如果是win平台则主要依靠bx_instr_lin_access来实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
void bx_instr_lin_access(unsigned cpu, bx_address lin, bx_address phy,
unsigned len, unsigned memtype, unsigned rw) {
BX_CPU_C *pcpu = BX_CPU(cpu);
const uint64_t pc = pcpu->prev_rip;

if (rw != BX_WRITE && rw != BX_RW) {
return;
}

if (!pcpu->long_mode() || !windows::check_kernel_addr(pc) || !windows::check_kernel_addr(lin)) {
return;
}

if (globals::rep_movs) {
return;
}

const uint64_t rsp = pcpu->gen_reg[BX_64BIT_REG_RSP].rrx;
if (globals::rsp_locked.find(rsp) != globals::rsp_locked.end()) {
return;
}

taint::set_taint(lin, len, /*tainted=*/false);
}

4、污点传播
bx_instr_before_execution中主要对以下操作指令作检测,指令形式主要为 <REP> MOVS{B,D},用于污点传播追踪:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
const unsigned int opcode = i->getIaOpcode();
switch (opcode) {
case BX_IA_MOV_GqEq: /* Standard library memcpy() prologue handling. */
...
case BX_IA_REP_MOVSB_YbXb:
case BX_IA_REP_MOVSW_YwXw:
case BX_IA_REP_MOVSD_YdXd:
case BX_IA_REP_MOVSQ_YqXq: /* Inline memcpy handling */
...
switch (opcode) {
case BX_IA_REP_MOVSB_YbXb: mult = 1; break;
case BX_IA_REP_MOVSW_YwXw: mult = 2; break;
case BX_IA_REP_MOVSD_YdXd: mult = 4; break;
case BX_IA_REP_MOVSQ_YqXq: mult = 8; break;
}
...

case BX_IA_RET_Op64: /* Allocator and memcpy() epilogue handling. */
...

对于非<REP> MOVS{B,D}指令的内存访问:

  • 写操作:清除内存污点标记,标记为已初始化;
  • 读操作:检测污点标记,如果shadow memory中标记为未初始化读取,则在guest memory中验证:标记不匹配则清除污点,否则若真为未初始化读取就当漏洞报告出来
1
2
3
4
5
6
7
8
9
10
/* src_in_kernel */ {
uint64_t tainted_offset = 0;
taint::access_type type = taint::check_taint(pcpu, src, size, &tainted_offset);

if (type == taint::METADATA_MARKER_MISMATCH) {
taint::set_taint(src, size, /*tainted=*/false);
} else if (type == taint::ACCESS_INVALID) {
process_bug_candidate(
pcpu, i, pcpu->prev_rip, src, size, dst, taint::get_origin(src + tainted_offset));
}

总结起来,是否为漏洞主要基于以下几点:

1、<REP> MOVS{B,D}中 源地址为内核,目标地址为用户地址,从内核输出数据到用户

2、源地址被标记为污点